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ABSTRACT  
This manuscript discusses aspects of association-based multi-target tracking, with a particular focus on the 
multiple-hypothesis tracking (MHT) paradigm. We address two recent extensions for challenging multi-sensor 
tracking problems with disparate sensors. One approach considers a novel asynchronous processing framework 
for MHT. The second approach relies on simplifying approximations to enable scalable graph-based processing. 
We describe initial simulation-based results, and discuss directions for further research. 

1.0 MULTI-TARGET TRACKING 

In multi-target tracking (MTT), the variable of interest over a sequence of times 𝑡𝑡𝑘𝑘 = (𝑡𝑡1, … , 𝑡𝑡𝑘𝑘) is a set of 
trajectories that we denote by 𝑋𝑋𝑘𝑘. Each trajectory in this set has a time of birth, an evolution in target state space, 
and (possibly) a time of death. Hence, we are interest to identify the time evolution of an unknown (and time-
varying) number of objects. We observe a sequence of sets of measurements 𝑍𝑍𝑘𝑘. The usual simplifying assumption 
in the MTT problem formulation is that each target at each sensor measurement time gives rise to at most one 
measurement. However, it is not known which measurement originates from which object, and there are as well 
false measurements that are not target originated. 

1.1 Optimality 
A first difficulty in addressing the MTT problem is that it is not obvious how to define optimality. One could 
consider the posterior probability distribution 𝑝𝑝�𝑋𝑋𝑘𝑘|𝑍𝑍𝑘𝑘� and seek to identify a classical estimator, e.g. the 
maximum a posteriori (MAP) estimator. Aside from the computational complexity associated with attempting 
such an operation, there is a conceptual difficulty in performing MAP estimation in this setting. This issue is 
discussed effectively by Mahler in [1, pp. 494-500]. Essentially, it is problematic to compare values of the posterior 
probability distribution for choices of 𝑋𝑋𝑘𝑘 that correspond to sets of objects with disparate cardinalities or temporal 
support. MAP estimation cannot meaningfully be performed. 

One approach to resolving this difficulty is explicitly to consider an explanation for the data, i.e. to specify which 
measurements are to be rejected as false and how target-originated measurements are to be associated. Let us 
denote by 𝑞𝑞𝑘𝑘 one such global hypothesis or explanation. This leads to a probabilistic conditioning approach and 
the following expression for the multi-target posterior probability distribution 𝑝𝑝�𝑋𝑋𝑘𝑘|𝑍𝑍𝑘𝑘�: 

𝑝𝑝�𝑋𝑋𝑘𝑘|𝑍𝑍𝑘𝑘� = ∑ 𝑝𝑝�𝑋𝑋𝑘𝑘|𝑍𝑍𝑘𝑘 ,𝑞𝑞𝑘𝑘�𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘�𝑞𝑞𝑘𝑘 .     (1) 
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It is worth noting that the space of global hypotheses is enormous. (In fact, considering the possibility that not all 
targets will be detected over the time interval 𝑡𝑡𝑘𝑘, the set of global hypotheses is infinite.) The multiple-hypothesis 
tracking (MHT) paradigm resolves the conceptual and practical difficulties noted above. The former difficulty is 
addressed by focusing exclusively on 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘�, and seeking the MAP estimate for 𝑞𝑞𝑘𝑘 without facing the 
conceptual difficulty posed by continuous-valued spaces. The latter difficulty is generally addressed by neglecting 
undetected targets, and resolving hypotheses over small time horizons to bound computational complexity.  

Thus, the MHT approach may be characterized as seeking the best explanation of the data, and then conditioning 
on this explanation to determine the continuous-space trajectories of interest. The latter task amounts to solving a 
set of nonlinear filtering problems, for which in the linear Gaussian case both MMSE and MAP estimators are 
given by the recursive Kalman filter; in the linear non-Gaussian case, the Kalman filter remains optimal among all 
linear estimators: 

𝑞𝑞�𝑘𝑘 = arg max𝑞𝑞𝑘𝑘𝑝𝑝�𝑞𝑞
𝑘𝑘|𝑍𝑍𝑘𝑘�,      (2) 

𝑋𝑋�𝑘𝑘 = arg max𝑋𝑋𝑘𝑘 𝑝𝑝�𝑋𝑋
𝑘𝑘|𝑍𝑍𝑘𝑘, 𝑞𝑞�𝑘𝑘�.      (3) 

Association-based approaches like MHT do not directly optimize a criterion based on the multi-target posterior 
probability distribution 𝑝𝑝�𝑋𝑋𝑘𝑘|𝑍𝑍𝑘𝑘�. Thus, while MHT seeks the MAP association hypothesis 𝑞𝑞�𝑘𝑘 – and this surely 
is a reasonable thing to do – there is no guarantee that selecting 𝑞𝑞�𝑘𝑘 will lead to optimal performance with respect 
to arbitrary MTT performance criteria based on 𝑝𝑝�𝑋𝑋𝑘𝑘|𝑍𝑍𝑘𝑘�. An interesting result in this respect is discussed in [2], 
where communication-constrained data association is considered. It is shown that statistical nearest neighbor 
(SNN) association, i.e. the MAP solution to the single-target single-scan track maintenance problem, does not 
minimize the track localization error in sufficiently-high clutter environments. One can do better by following the 
data-association strategy detailed in the paper. Nonetheless, in practice (and not surprisingly) we find that selection 
of the MAP association hypothesis is generally a good thing to do. 

1.2 The Use of Bayes Rule 
In [3, pp. 8-9], Vo presents a lucid discussion of potential conceptual difficulties in association-based MTT. His 
focus is on the problematics associated with applying Bayes rule to manipulate 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘�. In particular, Bayes 
rule prescribes the following:   

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑞𝑞𝑘𝑘�𝑝𝑝�𝑞𝑞𝑘𝑘�
𝑝𝑝�𝑍𝑍𝑘𝑘�

.      (4) 

Vo rightly observes that the use of Bayes rule in this setting, while seemingly benign, does raise some concerns. 
Since 𝑞𝑞𝑘𝑘 depends on 𝑍𝑍𝑘𝑘 as it prescribes how to explain the data, is 𝑝𝑝�𝑞𝑞𝑘𝑘� a valid prior? Likewise, is 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑞𝑞𝑘𝑘� a 
valid likelihood function?  

The use of Bayes rule in this setting can be clarified via a conditioning argument. To our knowledge, this point 
has been overlooked in the MHT community to date. In particular, we must proceed as follows, where �𝑍𝑍𝑘𝑘� is the 
sequence of measurement set cardinality for the time sequence 𝑡𝑡𝑘𝑘:  

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� = 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘, �𝑍𝑍𝑘𝑘�� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑞𝑞𝑘𝑘,�𝑍𝑍𝑘𝑘��𝑝𝑝�𝑞𝑞𝑘𝑘|�𝑍𝑍𝑘𝑘��
𝑝𝑝�𝑍𝑍𝑘𝑘|�𝑍𝑍𝑘𝑘��

.    (5) 
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Note that 𝑞𝑞𝑘𝑘 is conditionally independent of 𝑍𝑍𝑘𝑘 given �𝑍𝑍𝑘𝑘�, hence 𝑝𝑝�𝑞𝑞𝑘𝑘|�𝑍𝑍𝑘𝑘�� is now a valid prior and 
𝑝𝑝�𝑍𝑍𝑘𝑘|𝑞𝑞𝑘𝑘, �𝑍𝑍𝑘𝑘�� is now a valid likelihood function. 

Referring to the numerator in (5), Vo notes further that it is not clear whether 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑞𝑞𝑘𝑘�𝑝𝑝�𝑞𝑞𝑘𝑘� is the joint density 
𝑝𝑝�𝑍𝑍𝑘𝑘 , 𝑞𝑞𝑘𝑘�. Indeed, the marginal 𝑝𝑝�𝑞𝑞𝑘𝑘� that result by integration of 𝑝𝑝�𝑍𝑍𝑘𝑘 ,𝑞𝑞𝑘𝑘� over 𝑍𝑍𝑘𝑘 according to (7) must not 
depend on the data, contracting the fact that 𝑞𝑞𝑘𝑘 does depend on 𝑍𝑍𝑘𝑘. In (7), we denote by 𝑍𝑍 the dummy integration 
variable. Note that (7) neglects the fact that the integration can only meaningfully be performed over those 
measurement sets that are consistent with 𝑞𝑞𝑘𝑘: 

𝑝𝑝�𝑞𝑞𝑘𝑘� = ∫ 𝑝𝑝�𝑍𝑍|𝑞𝑞𝑘𝑘�𝑝𝑝�𝑞𝑞𝑘𝑘�𝑑𝑑𝑍𝑍𝑍𝑍 .      (6) 

Once more, we can resolve this difficulty by considering instead the joint density conditioned on a given �𝑍𝑍𝑘𝑘�. 
Referring to the numerator in (5), we have: 

𝑝𝑝�𝑞𝑞𝑘𝑘|�𝑍𝑍𝑘𝑘�� = ∫ 𝑝𝑝�𝑍𝑍|𝑞𝑞𝑘𝑘, �𝑍𝑍𝑘𝑘��𝑝𝑝�𝑞𝑞𝑘𝑘|�𝑍𝑍𝑘𝑘��𝑑𝑑𝑍𝑍𝑍𝑍,|𝑍𝑍|=�𝑍𝑍𝑘𝑘�      (7) 

Finally, the normalizing constant must again be understood as integration over all global hypotheses consistent 
with a given measurement cardinality. This resolves the concern raised by Vo as to whether the normalizing 
constant even exists. Note that 𝑞𝑞𝑘𝑘 is discrete-valued, hence (8) is simply a sum: 

𝑝𝑝�𝑍𝑍𝑘𝑘|�𝑍𝑍𝑘𝑘�� = ∫ 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑞𝑞𝑘𝑘, �𝑍𝑍𝑘𝑘��𝑝𝑝�𝑞𝑞𝑘𝑘|�𝑍𝑍𝑘𝑘��𝑑𝑑𝑞𝑞𝑘𝑘𝑞𝑞𝑘𝑘 consistent with �𝑍𝑍𝑘𝑘� .  (8) 

1.3 Hypothesis-Oriented MHT 
Computational and real-time constraints require that we adopt a recursive formulation of (5). Thus, we proceed as 
follows: 

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� = 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘�
𝑝𝑝�|𝑍𝑍𝑘𝑘||𝑍𝑍𝑘𝑘�

= 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘, |𝑍𝑍𝑘𝑘|� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘,|𝑍𝑍𝑘𝑘|�𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1,|𝑍𝑍𝑘𝑘|�
𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,|𝑍𝑍𝑘𝑘|�

.  (9) 

We consider in turn each of the factors in (10). Noting that |𝑍𝑍𝑘𝑘| is known given 𝑞𝑞𝑘𝑘, the first numerator factor in 
(9) may be manipulated as follows: 

𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘 , |𝑍𝑍𝑘𝑘|� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1, 𝑞𝑞𝑘𝑘, |𝑍𝑍𝑘𝑘|�𝑝𝑝�|𝑍𝑍𝑘𝑘||𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�    

= 𝑝𝑝�𝑍𝑍𝑘𝑘 , |𝑍𝑍𝑘𝑘||𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�.   (10) 

The second numerator factor in (9) may be manipulated as follows: 

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1, |𝑍𝑍𝑘𝑘|� = 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1, |𝑍𝑍𝑘𝑘|,𝑞𝑞𝑘𝑘−1�𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1, |𝑍𝑍𝑘𝑘|� 

= 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1,|𝑍𝑍𝑘𝑘|,𝑞𝑞𝑘𝑘−1�𝑝𝑝�|𝑍𝑍𝑘𝑘||𝑞𝑞𝑘𝑘−1,𝑍𝑍𝑘𝑘−1�𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1�
𝑝𝑝�|𝑍𝑍𝑘𝑘||𝑍𝑍𝑘𝑘−1�

.    (11) 

The denominator in (9) may be manipulated as follows:  
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𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1, |𝑍𝑍𝑘𝑘|� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1�
𝑝𝑝�|𝑍𝑍𝑘𝑘||𝑍𝑍𝑘𝑘−1�

.     (12) 

Combining (11-13) according to (10) yields the following: 

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘−1�𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1�
𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1�

.    (13) 

This is the global hypothesis recursion that expresses 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� as a function of 𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1� and the current 
scan of data 𝑍𝑍𝑘𝑘. This recursion matches what has already been presented in the literature, while addressing the 
conceptual concerns discussed previously. Note that 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘−1� in (13) may be simplified further to 
𝑝𝑝�𝑞𝑞𝑘𝑘|𝑞𝑞𝑘𝑘−1�. 

1.4 Track-Oriented MHT 
Though useful, the recursion (13) is generally intractable in the sense that the space of global hypotheses is quite 
large. Fortunately, under some simplifying assumptions, namely Poisson-distributed number of target births and 
number of false alarms at each scan, the posterior probability of a global hypothesis 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� may be expressed 
as a product over local (or track) hypotheses associated with 𝑞𝑞𝑘𝑘. This fundamental contribution to the MHT 
literature is presented in [4].   

The Poisson assumptions above are quite reasonable in many settings. Indeed, consider a continuous-time birth-
death process with exponentially-distributed target inter-arrival (birth) times with parameter 𝜆𝜆𝑏𝑏, and exponentially 
distributed target lifetime with parameter 𝜆𝜆𝜒𝜒. Discrete-time statistics may be readily obtained, leading to a Poisson 
distributed number of births with mean 𝜇𝜇𝑏𝑏(𝑡𝑡) and death probability 𝑝𝑝𝜒𝜒(𝑡𝑡) over an interval of duration 𝑡𝑡. The 
expressions are given in equations (14-15): 

𝜇𝜇𝑏𝑏(𝑡𝑡) = 𝜆𝜆𝑏𝑏
𝜆𝜆𝜒𝜒
�1 − 𝑒𝑒−𝜆𝜆𝜒𝜒𝑡𝑡�,     (14) 

𝑝𝑝𝜒𝜒(𝑡𝑡) = 1 − 𝑒𝑒−𝜆𝜆𝜒𝜒𝑡𝑡 .      (15) 

For simplicity, in the following we will omit the time interval 𝑡𝑡 and use the birth rate and death probability 𝜇𝜇𝑏𝑏 and 
𝑝𝑝𝜒𝜒, respectively. (Time arguments should be noted explicitly when the sensor revisit interval is time-varying.) 

Similarly, the Poisson false alarm assumption (with mean Λ) is a reasonable one as it matches clutter statistics in 
many application domains. It results as a limiting case of the Binomial distribution with a large number of detection 
cells 𝑁𝑁 and vanishingly small false detection probability 𝑝𝑝𝐹𝐹, with 𝑝𝑝𝐹𝐹 ∙ 𝑁𝑁 → Λ. We assume that at every scan, each 
target is detected with probability 𝑝𝑝𝑑𝑑. 

Let 𝜏𝜏 be the number of targets in global hypothesis 𝑞𝑞𝑘𝑘−1 at time 𝑡𝑡𝑘𝑘−1, 𝑟𝑟 = |𝑍𝑍𝑘𝑘| be the number of measurements 
in the current scan at time 𝑡𝑡𝑘𝑘, and 𝑏𝑏, 𝜒𝜒, and 𝑑𝑑 are the number of target births, deaths, and measurement updates in 
global hypothesis 𝑞𝑞𝑘𝑘 at time 𝑡𝑡𝑘𝑘, respectively. Note that the classical MHT only considers global hypotheses for 
which targets are detected at birth.  

We now express the global hypothesis recursion (13) explicitly. It can be shown that the factor 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑞𝑞𝑘𝑘−1� may 
be written as follows: 
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𝑝𝑝�𝑞𝑞𝑘𝑘|𝑞𝑞𝑘𝑘−1� = �exp(−𝑝𝑝𝑑𝑑𝜇𝜇𝑏𝑏−Λ)Λ𝑟𝑟

𝑟𝑟!
� 𝑝𝑝𝜒𝜒

𝜒𝜒 ��1 − 𝑝𝑝𝜒𝜒�(1 − 𝑝𝑝𝑑𝑑)�
𝜏𝜏−𝜒𝜒−𝑑𝑑

��1−𝑝𝑝𝜒𝜒�𝑝𝑝𝑑𝑑
Λ

�
𝑑𝑑
�𝑝𝑝𝑑𝑑𝜇𝜇𝑏𝑏

Λ
�
𝑏𝑏
. (16) 

The factor 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�  in (13) accounts for the probability of observing a set of measurements given a global 
hypothesis. It is simply a product over filter residual scores; hence, it may be written as follows, where, under 𝑞𝑞𝑘𝑘,  
𝐽𝐽𝑑𝑑 is the set of track update measurements, 𝐽𝐽𝑓𝑓𝑓𝑓 is the set of false alarms, 𝐽𝐽𝑏𝑏 is the set of target birth measurements, 
and 𝑓𝑓(⋅) is the filter score: 

𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘� = ∏ 𝑓𝑓�𝑧𝑧𝑗𝑗|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�𝑗𝑗∈𝐽𝐽𝑑𝑑 ∏ 𝑓𝑓�𝑧𝑧𝑗𝑗|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�𝑗𝑗∈𝐽𝐽𝑏𝑏 ∏ 𝑓𝑓�𝑧𝑧𝑗𝑗|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�𝑗𝑗∈𝐽𝐽𝑓𝑓𝑓𝑓 .  (17) 

Equations (16-17) may be combined into (13), resulting in the following track-oriented MHT recursion. Equation 
(18) is of fundamental importance in that it factors global hypothesis scores into track scores. This allows the 
recursive determination of 𝑞𝑞�𝑘𝑘 as the solution to an integer programming problem, without requiring explicit 
enumeration of global hypotheses. Note that 𝑓𝑓𝑓𝑓𝑓𝑓(⋅) is the false alarm distribution: 

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� = 𝑝𝑝𝜒𝜒
𝜒𝜒 ��1 − 𝑝𝑝𝜒𝜒�(1 − 𝑝𝑝𝑑𝑑)�

𝜏𝜏−𝜒𝜒−𝑑𝑑
�

�1 − 𝑝𝑝𝜒𝜒�𝑝𝑝𝑑𝑑𝑓𝑓�𝑧𝑧𝑗𝑗|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�
Λ𝑓𝑓𝑓𝑓𝑓𝑓�𝑧𝑧𝑗𝑗�𝑗𝑗∈𝐽𝐽𝑑𝑑

�
𝑝𝑝𝑑𝑑𝜇𝜇𝑏𝑏𝑓𝑓�𝑧𝑧𝑗𝑗|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�

Λ𝑓𝑓𝑓𝑓𝑓𝑓�𝑧𝑧𝑗𝑗�𝑗𝑗∈𝐽𝐽𝑏𝑏

 

⋅
�exp�−𝑝𝑝𝑑𝑑𝜇𝜇𝑏𝑏−Λ�Λ

𝑟𝑟

𝑟𝑟! �∏ 𝑓𝑓�𝑧𝑧𝑗𝑗|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�𝑗𝑗∈𝑍𝑍𝑘𝑘

𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1�
𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1�.   (18) 

1.5 Practical Considerations and Algorithmic Extensions 
Though useful, the recursion (18) still is insufficient for viable MHT processing. Indeed, in principle one must 
form all track hypotheses over a temporal batch of data followed by solution to an optimization problem that results 
in 𝑞𝑞�𝑘𝑘. This incurs computational expense and solution latency in large surveillance problems. 

Hypothesis pruning allows tractable computational expense. Effective pruning schemes exist, based on reduction 
to a single global hypothesis with a bounded temporal delay; this enables both reduced computations and real-time 
processing. A straightforward solution to the integer programming problem is via linear programming (LP) 
relaxation; this was studied independently in [5-6]. 

Optimal processing in principle requires full hypothesis formation (with no hypothesis pruning) as well as track 
extraction as a single processing step. As mentioned above, hypothesis pruning is necessarily required. Further, 
track extraction is generally performed only for resolved hypotheses. Thus, hypothesis resolution and track 
management are generally decoupled in most MHT implementations. Correspondingly, hypothesis resolution 
based on LP relaxation employs equality constraints; that is, all sensor measurements are accounted for in all 
global hypotheses [5]. 

While suboptimal, the use of distinct hypothesis resolution and track extraction functions offers processing 
advantages. In particular, confirmed tracks may be favored in data-association processing; see [7-8] for an analysis 
of advantages resulting from feedback processing from track extraction to data association functions.  

Generally, we do not distinguish between the data-association hypothesis 𝑞𝑞�𝑘𝑘 and global hypotheses that are 
consistent with it. In general there any many data-indistinguishable global hypotheses associated with the same 
data association hypothesis. In particular, multiple target birth and death times are possible, and there may as well 
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be targets with no associated detections. The merits of considering a larger hypothesis space and the ability to do 
so without incurring additional computation expense are discussed in [9]. 

Hypothesis aggregation for data-indistinguishable hypotheses takes at least two forms. One involves aggregating 
over all target birth and death times to result in a single (aggregated) track hypothesis for a single associated-
measurement sequence [10]. The other involves aggregation over indistinguishable sensor measurements, as will 
occur in cardinality-estimation applications [11]. Aggregation over similar (but not data-indistinguishable) 
hypotheses may also be performed with appreciable benefits [12]. 

While centralized fusion provides excellent performance in many settings, effective exploitation of multi-sensor 
data with good performance and robustness characteristics often requires advanced processing architectures [13]. 
Fading detection statistics and sensor registration errors are best handled in distributed architectures. In addition 
to improved robustness characteristics, multi-stage data association provides an effective means to handling 
disparate sensor update rates and to exploit same-sensor association performance [14-15]. 

While the success of distributed processing solutions over centralized processing may surprise those familiar with 
detection and estimation theory and the optimality results associated with centralized solutions, we must recognize 
that the MTT problem is exceedingly complex. Hence, the choice is between suboptimal centralized solutions and 
suboptimal distributed solutions. Hence, distributed processing must be viewed as a flexible approach to 
suboptimal but effective surveillance solutions. Similarly, surprising results have been shown recently regarding 
the value of asynchronous processing in forensic settings to content with disparate data sources where the low-rate 
sensor is highly informative [16]. In such settings, the purposeful use of out-of-sequence processing enables 
effective MHT solutions that are impossible to achieve in time-sequential processing. This is described at greater 
length Section 2. 

MTT with redundant measurements poses a significant challenge. For simplicity, most paradigms adapt a 
Bernoulli measurement model. There are some exceptions, e.g. the probabilistic MHT (PMHT) and its non-
generative sensor model [17]. A complementary difficulty – merged measurements due to more than one target – 
also is not considered in most MTT treatments. 

Redundant measurements induced by multipath phenomena or multiple emissions have been addressed in an MHT 
setting; see [18-19] and references therein. However, while these papers are of interest, they do not address the 
challenging problem where all redundant measurements are characterized by the same measurement equation. A 
recent treatment of redundant measurement in the context of probability hypothesis density (PHD) research is 
discussed in [20-22]. Both merged and redundant measurements are addressed using a Markov Chain Monte Carlo 
(MCMC) approach in [23], and in [24-25] with the probabilistic data association filter (PDAF). The generalized 
MHT approach for this problem is developed in [26].  

1.6 Further Observations 
We now clarify two additional points regarding the nature of the MHT solution to the MTT problem. First, the 
track-oriented MHT (TOMHT) solution as described here is an efficient means to achieving the hypothesis-
oriented MHT (HOMHT) solution. Indeed, the two solutions will be the same under the assumption of Poisson-
distributed target births and clutter returns. Hence, both approaches include MAP estimation of a global hypothesis, 
followed by minimum mean squared error (MMSE) filtering conditioned on the MAP solution to the data 
association problem. Thus, we may characterize both HOMHT and TOMHT as “MMSE-MAP” approaches. This 
observation is in contrast to some assertions in the literature that characterize TOMHT as a MMSE-ML approach 
[13, 27] that relies on a maximum likelihood (ML) criterion. In contrast to this claim, it should be noted that our 
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TOMHT relies on a non-uniform a priori distribution on target births. Nonetheless, it certainly might be true that 
depending on implementation details, other TOMHT implementations may be best characterized as MMSE-ML 
algorithms. 

Second, Mahler in [1, pp. 340-341] raises the concern that the global hypothesis appears to be anomalous as a state 
variable. First, he asserts that since |𝑍𝑍𝑘𝑘| is an observable, its use in the MHT recursion is suspicious. Let us examine 
this by looking again at (13), written here as (19) in slightly-simplified form: 

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�𝑝𝑝�𝑞𝑞𝑘𝑘|𝑞𝑞𝑘𝑘−1�𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1�
𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1�

.     (19) 

Note that we may understand this as a prediction-update recursion, whereby first  𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1� is predicted by 
use of  𝑝𝑝�𝑞𝑞𝑘𝑘|𝑞𝑞𝑘𝑘−1�. That is, we have: 

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1� = 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑞𝑞𝑘𝑘−1�𝑝𝑝�𝑞𝑞𝑘𝑘−1|𝑍𝑍𝑘𝑘−1�.     (20) 

Next, the update is given by: 

𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘� = 𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1,𝑞𝑞𝑘𝑘�𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘−1�
𝑝𝑝�𝑍𝑍𝑘𝑘|𝑍𝑍𝑘𝑘−1�

.      (21) 

In practice, we do not separate the recursion into the prediction and update steps (20-21) and use the combined 
form (19) directly. Hence, we need not consider global hypotheses 𝑞𝑞𝑘𝑘 whose cardinality assumptions are 
inconsistent with the data cardinality |𝑍𝑍𝑘𝑘|. However, this does not constitute an implicit use of |𝑍𝑍𝑘𝑘| in the 
prediction equation (20). Rather, in using (19) directly, we avoid considering those global hypotheses that are 
inconsistent with |𝑍𝑍𝑘𝑘|, as these will have null posterior probability. 

A further concern raised by Mahler in [1, pp. 340-341] is that the labelling of measurements introduces an a priori 
order, and this in turn constitutes extraneous information that may introduce a statistical bias in the MHT solution. 
In fact, the labelling of measurements is arbitrary, it does not introduce an ordering, and it does not impact the 
computation of 𝑝𝑝�𝑞𝑞𝑘𝑘|𝑍𝑍𝑘𝑘�. Hence, the labeling of measurements has no impact on the resulting MHT solution 
�𝑋𝑋�𝑘𝑘 ,𝑞𝑞�𝑘𝑘� given by (2-3). 

2.0 MULTI-INT SURVEILLANCE 

MHT-based approaches are severely challenged when faced with highly disparate multi-INT data whereby high-
revisit rate kinematic sensor data is to be fused with sporadic but highly-informative identity information. An 
illustration of the multi-INT challenge is in Figure 2-1. The challenge is to associate high-purity kinematic tracks 
with infrequently-arriving identity information, in settings where object density is high and many association 
possibilities must be reasoned over. 

Distributed MHT [14-15] provides some computational savings. In a first MHT processing stage, we form short-
duration high-purity kinematic tracks, followed by a fusion of track-level kinematic data and identity tracks in a 
second MHT processing stage. While this approach improves upon centralized MHT processing, it too does not 
scale to large, high-density scenarios with highly infrequent identity information. Next, we discuss two approaches 
to improving the state-of-the-art in association-based MTT for this problem. 
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Figure 2-1: Illustration of the Multi-INT Challenge. 

2.1 Asynchronous MHT 
While MHT processing is effective for kinematic tracking, its application for our multi-INT processing is 
extremely challenging due to the need for deep hypothesis trees to benefit from highly-informative target 
emissions. Consider the following illustrative example.  

Assume there are 𝑁𝑁 sensor scans, where the first and last scans are due to the low-rate sensor and intervening scans 
are due to the high-rate sensor. We assume one-dimensional MOU target motion and positional sensor 
measurements. We consider a number of solution schemes. The first is the clairvoyant solution, where 
measurement provenance is assumed to be known for the high-rate sensor as well. This reduces to a set of linear 
filtering problems for which the KF provides an optimal solution. 

The second solution is to use the global nearest neighbor (GNN) assignment with sequential processing of all 
sensor scans. Note that, in general, data association errors do occur. We recover from such errors at the last scan 
(from the low-rate sensor), when measurement provenance is known. Naturally, for a fixed number of targets and 
target density, as the number of scans of data increases, the problem becomes more difficult in the sense that data 
association errors will accrue prior to the last scan of data. 

Can we do better than the GNN solution if we constrain ourselves to maintaining a single global hypothesis? It 
turns out that improved performance is possible. This is achieved by performing Kalman smoothing based on the 
current state estimates at time 𝑡𝑡𝑘𝑘 and the final scan of measurements at time 𝑡𝑡𝑁𝑁, to estimate target positions at time 
𝑡𝑡𝑘𝑘. These estimated positions can be used in defining the GNN assignment matrix, resulting in a more reliable 
solution than is possible with sequential processing. We call this approach asynchronous GNN. 
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Figure 2-2 illustrates one realization of target trajectories, along with four candidate solutions. These are the 
clairvoyant solution, the sequential GNN solution, and two variations on the asynchronous GNN solution – one 
with scoring based on approximate Kalman smoothing, and one exact scoring based on Kalman filtering. Note the 
“recovery” at the last scan exhibited by the sequential GNN solution. Figure 2-3 illustrates Monte Carlo 
performance results as a function of the number of sensor scans. When there are only two scans of data, both from 
the low-rate sensor, all four solutions coincide. The clairvoyant solution improves slightly with an increasing 
number of scans, due to filter convergence. The three solutions for which measurement provenance on high-rate 
sensor returns is unavailable all degrade with increasing number of scans, measured in terms of average position 
estimation error. 

 

Figure 2-2: Realization of Competing Solutions for Multi-Target Filtering. 
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Figure 2-3: Performance as a Function of Scenario Duration. 

We see that the asynchronous GNN provides a dramatic multi-target filtering improvement over sequential GNN, 
while maintaining the same processing complexity, albeit with the need for Kalman smoothing or an additional 
Kalman filtering update in defining the GNN assignment matrices. Note that in the asynchronous GNN solutions 
the information in the final scan is used solely to improve association decisions, and does not impact filter updates. 
There is no issue of repeated use of final-scan information.  

The above result may be applied to the general MTT problem, for which the number of targets is unknown, as 
well as in MHT processing, where data association decisions are based on sliding window of scans and multiple 
association hypotheses are maintained. This is best described via a notional example. 

Figure 2-4 illustrates Asynchronous MHT (A-MHT) processing of track level identity data S1 and kinematic data 
W1 and W2. The processing proceeds in batch or forensic mode. We initialize the set of track hypothesis trees 
with all unassociated identity tracks. Next, we proceed to process kinematic tracks sequentially, whereby the entire 
track is processed in forming and scoring track hypothesis trees; this in analogous to the preceding asynchronous 
GNN discussion. However, here we consider as well new target hypotheses. Further, we consider several 
processing steps before pruning the set of track hypothesis trees, as prescribed under MHT n-scan pruning logic.  
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Figure 2-4: A-MHT Hypothesis Formation via Batch Processing of Tracks. 

The track order for processing is somewhat arbitrary, but for convenience we order kinematic tracks by time, 
starting with the first track to terminate. This explains why, in the example, we process kinematic track W1 first. 
We do not consider the hypothesis that both W1 and W2 are due to the same target as they overlap in time. This 
would require a redundant-measurement sensor model, for which recent developments in MHT are discussed in 
[26]. 

A-MHT hypothesis generation logic is different from classical MHT in certain details as well. As an example, 
there is no need to consider limited track coasting prior to a track termination hypothesis. The A-MHT will allow 
for arbitrarily long track coasts, since the single-sensor tracks in any fused track hypothesis may exhibit significant 
temporal separation. Further details on our A-MHT advances may be found in [16, 28]. 

2.2 Multi-INT Graph-Based Tracking 
An approach to track stitching that avoids hypothesis explosion relies on a Markovian assumption that simplifies 
likelihood computations, where 𝑦𝑦𝑖𝑖 represents a track (a sequence of associated measurements) and 𝑦𝑦𝑖𝑖 =
(𝑦𝑦1, … ,𝑦𝑦𝑖𝑖): 

𝐿𝐿(𝑦𝑦𝑛𝑛) = 𝐿𝐿(𝑦𝑦1)∏ 𝐿𝐿�𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖−1�𝑖𝑖=2,…,𝑛𝑛 ≈ 𝐿𝐿(𝑦𝑦1)∏ 𝐿𝐿(𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖−1)𝑖𝑖=2,…,𝑛𝑛 .  (22) 

This simplification is generally valid for kinematic data, but is not so for identity data whose value does not degrade 
over time. The approximation assumes temporally non-overlapping tracks. The approach has been exploited 
fruitfully in kinematic sensor large-scale tracking application via a min-cost network flow formulation [29-30]. 
Unfortunately, the graph-based tracking (GBT) methodology is not directly applicable to the multi-INT challenge 
of interest here. Extensions to the single-target identity case may be found in [31-32]. 
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It is of interest to exploit the computational reduction available in GBT while seeking to extend the formulation to 
the multi-INT setting. This generalization yields the multi-INT GBT (MI-GBT). While developed independently, 
the MI-GBT may be seen as a generalization to recently-reported video tracking based on multi-commodity flow 
ideas [33]. Indeed, this earlier work does not contend with multi-sensor data association. 

We consider a set of kinematic tracks that we represent by a set of nodes 𝑉𝑉. We consider as well source and sink 
nodes, denoted by 𝑣𝑣0 and 𝑣𝑣∞, respectively. We define the augmented set of nodes by 𝑉𝑉� = 𝑉𝑉 ∪ {𝑣𝑣0,𝑣𝑣∞}. We 
consider a directed graph 𝐺𝐺 = (𝑉𝑉� ,𝐴𝐴), where 𝐴𝐴 is a set of edges. For each feasible edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, we have a 
corresponding cost 𝑐𝑐𝑖𝑖𝑗𝑗, given by a negative log likelihood, 𝑐𝑐𝑖𝑖𝑗𝑗 = −𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿�𝑣𝑣𝑗𝑗|𝑣𝑣𝑖𝑖�. 

An edge cost accounts for both detection and kinematic information; this includes accounting for the lack of 
kinematic detection between the end of 𝑣𝑣𝑖𝑖 and the start of 𝑣𝑣𝑗𝑗. All kinematic track nodes 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 have edges from 
the source and to the sink node, with costs 𝑐𝑐0𝑖𝑖 and 𝑐𝑐𝑖𝑖∞, respectively. These costs reflect statistics for target birth, 
death, and kinematic motion, and for sensor detection and localization. Consistent with the standard Bernoulli 
detection model, we do not consider edges between time-overlapping kinematic tracks. 

The kinematic graph-based tracking problem amounts to the following ILP problem. Further, the problem can be 
relaxed to a min-cost network flow (MCNF) problem, for which efficient integer-solution algorithms exist. We 
seek the solution that minimizes the objective (23) subject to constraints (24-26). Eqns. (25-26) insure that all 
nodes are used exactly once, and that flow balance is achieved: 

𝐽𝐽 = ∑ 𝑐𝑐𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗(𝑖𝑖,𝑗𝑗)∈𝐴𝐴 ,       (23) 

𝑥𝑥𝑖𝑖𝑗𝑗 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,       (24) 

∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖:(𝑖𝑖,𝑗𝑗)∈𝐴𝐴 = 1,∀𝑗𝑗 ∈ 𝑉𝑉,      (25) 

∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗:(𝑖𝑖,𝑗𝑗)∈𝐴𝐴 = 1,∀𝑖𝑖 ∈ 𝑉𝑉.      (26) 

For the multi-INT problem, in addition to the kinematic tracks identified by the set 𝑉𝑉, we are given a set of emitter 
tracks 𝐸𝐸. For each emitter track 𝑒𝑒𝑘𝑘 ∈ 𝐸𝐸, we identify the set of feasible kinematic track nodes, denoted by 𝑉𝑉𝑘𝑘 ⊂ 𝑉𝑉. 
Feasibility is based on intersection of forward and backward light cones from each emission in track 𝑒𝑒𝑘𝑘, based on 
a maximum target speed constraint. Correspondingly, we have the augmented set of set of nodes 𝑉𝑉�𝑘𝑘 = 𝑉𝑉𝑘𝑘 ∪
{𝑣𝑣0,𝑣𝑣∞} and the set of feasible edges 𝐴𝐴𝑘𝑘 ⊂ 𝐴𝐴 for emitter track 𝑒𝑒𝑘𝑘. We define as well the null emitter 𝑒𝑒0 and the 
augmented emitter set 𝐸𝐸� = 𝐸𝐸 ∪ {𝑒𝑒0}. Note that 𝑉𝑉0 = 𝑉𝑉 and 𝐴𝐴0 = 𝐴𝐴. 

We consider the following ILP formulation. Here, 𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘 denotes the directed edge from node 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗 in the sub-
graph 𝐺𝐺𝑘𝑘 = (𝑉𝑉�𝑘𝑘,𝐴𝐴𝑘𝑘). We have 𝐺𝐺0 = 𝐺𝐺. Note that in general the cost 𝑐𝑐𝑖𝑖𝑗𝑗𝑘𝑘 depends on the emitter 𝑒𝑒𝑘𝑘, for transitions 
from the source or to the sink node, i.e. for 𝑖𝑖 = 0 or 𝑗𝑗 = ∞. It is necessary to include the edge (0,∞) ∈ 𝐴𝐴𝑘𝑘 for all 
𝑘𝑘 such that 𝑒𝑒𝑘𝑘 ∈ 𝐸𝐸; we do not include (0,∞) in 𝐴𝐴0: 

𝐽𝐽 = ∑ ∑ 𝑐𝑐𝑖𝑖𝑗𝑗𝑘𝑘𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑘𝑘𝑒𝑒𝑘𝑘∈𝐸𝐸� ,      (27) 

𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑘𝑘 ,∀𝑘𝑘 𝑠𝑠. 𝑡𝑡. 𝑒𝑒𝑘𝑘 ∈ 𝐸𝐸�,    (28) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖:(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑘𝑘𝑒𝑒𝑘𝑘∈𝐸𝐸� = 1,∀𝑗𝑗 ∈ 𝑉𝑉,     (29) 

∑ 𝑥𝑥0𝑖𝑖𝑘𝑘𝑣𝑣𝑖𝑖∈𝑉𝑉�\{0} = 1,∀𝑘𝑘 𝑠𝑠. 𝑡𝑡. 𝑒𝑒𝑘𝑘 ∈ 𝐸𝐸,     (30) 

∑ 𝑥𝑥𝑗𝑗𝑖𝑖𝑘𝑘𝑗𝑗:(𝑗𝑗,𝑖𝑖)∈𝐴𝐴𝑘𝑘 − ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗:(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑘𝑘 = 0,∀𝑖𝑖 𝑠𝑠. 𝑡𝑡. 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉,∀𝑘𝑘 𝑠𝑠. 𝑡𝑡. 𝑒𝑒𝑘𝑘 ∈ 𝐸𝐸�. (31) 
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We seek the solution that minimizes the objective (27) subject to constraints (28-31). Eqn. (29) insure that all 
nodes are used exactly once. Eqn. (30) insures that all emitter are used exactly once. Eqn. (31) insures that flow 
balance is achieved in each sub-graph.  

Consider the multi-INT data illustrated in Figure 2-5. There is a single emitter that emits twice. There are three 
kinematic tracks. Based on time-space feasibility, kinematic track 𝑣𝑣3 and emitter track 𝑒𝑒1 cannot originate from 
the same target. For this problem, the graphs 𝐺𝐺0 and 𝐺𝐺1 are illustrated in Figure 2-6. 

 

Figure 2-5: A Small Example to Illustrate the Proposed Multi-INT Solution. 

 

Figure 2-6: Representation of the Multi-INT Graph Structure. 

Notionally, for this problem, the optimal solution that minimizes  𝐽𝐽 in eqn. (6) will be the following: 𝑥𝑥030 =
𝑥𝑥3∞0 = 𝑥𝑥011 = 𝑥𝑥121 = 𝑥𝑥2∞1 = 1, with all other variables 𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘 equal to zero. 

Note that the number of variables to be determined in solving the integer linear program (ILP) is 𝑂𝑂(|𝑉𝑉� |2)  for the 
single-INT problem, and 𝑂𝑂(|𝑉𝑉� |2|𝐸𝐸�|) for the multi-INT problem. While the multi-INT problem is larger, in general 
it is much smaller than the ILP size for an MHT-based formulation. 



Multiple-Hypothesis and 
Graph-Based Approaches to Multi-Target Tracking 

3 - 14 STO-EN-IST-155 

It is useful to have a back-of-the envelope assessment of the computational complexity associated with MHT, 
GBT, and MI-GBT solutions to the multi-INT problem. In particular, we wish to estimate the size of the ILP 
associated with these paradigms. Given 𝑚𝑚 sets of |𝑉𝑉| kinematic tracklets and |𝐸𝐸| emitter tracks, the GBT problem 
size is 𝑀𝑀 = 𝑂𝑂(𝑚𝑚|𝑉𝑉|2) while the MI-GBT problem size is 𝑀𝑀 = 𝑂𝑂�𝑚𝑚|𝑉𝑉|2(1 + |𝐸𝐸|)�. Both compare favorably to 
MHT-based approaches (including the A-MHT), for which problem size is 𝑀𝑀 = 𝑂𝑂�|𝑉𝑉|𝑚𝑚+1(1 + |𝐸𝐸|)�. The 
solution time associated with the ILP is problem-size dependent. We assume 𝑂𝑂(𝑀𝑀4) for A-MHT and MI-GBT 
based on LP relaxation, and 𝑂𝑂(𝑀𝑀3) for the GBT based on min-cost network flow (MCNF) or an equivalent bipartite 
matching formulation. 

For nominal choices of the problem-size parameters, estimated execution time as a function of scenario duration 
(measured as the number of sets of kinematic tracklets 𝑚𝑚) are illustrated in Figure 2-7. Determining the exact 
solution via MHT processing incurs exponentially-increasing complexity. The MI-GBT provides an approximate 
solution with somewhat higher complexity as the GBT that fails to exploit identity constraints. 

 

Figure 2-7: MI-GBT Achieves Near-Optimal Performance at Dramatically Reduced Complexity  
with Respect to A-MHT. The GBT approach cannot account for multi-INT constraints. 

The network-flow formulation that can be used to solve the GBT problem ensures that integer solutions are 
obtained. We do not have this guarantee when solving an ILP with a more general LP relaxation approach, as 
required in the MI-GBT. Nonetheless, non-integer solutions are seldom encountered in practice. When they are, a 
simple solution round-off scheme (while maintaining feasibility) can be performed. Non-integer solutions may 
contain information that could be exploited in a more involved solution round-off methodology. Further details 
and simulation results for the MI-GBT may be found in [34-35].  
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3.0 CONCLUSIONS 

MHT is a leading paradigm for advanced MTT. In this manuscript, we discuss salient elements of the mathematical 
underpinning of MHT. We seek to address some of the concerns that have been raised in the research community, 
including the use of a MAP optimality criterion and of the machinery of Bayesian inference. 

Additionally, we discuss recent extensions to address the multi-INT fusion problem (the correlation of highly 
disparate multi-sensor data), which is a significant challenge for the MTT research community. The MHT 
paradigm has been enhanced with the development of the A-MHT that exploits the forensic nature of the multi-
INT problem, achieving improved data association via out-of-sequence processing. 

Inspired by research in the video-tracking community, graph-based methods have fruitfully been applied to broader 
classes of surveillance problems. The GBT provides good computationally performance, subject to a mild path-
independence assumption that is valid in many single-sensor surveillance settings. Unfortunately, extensions to 
address the multi-INT challenge have proved elusive. 

The MI-GBT is a multi-INT generalization to the GBT that introduces further mild simplifying assumptions so as 
to enable a pairwise-cost formulation of the multi-INT problem. This leads to an ILP optimization problem that 
avoids the problematic (nonlinear) identity constraints that cannot be handled in the GBT formalism, and is much 
smaller than the ILP associated with MHT-based methods. 

Current directions for future research in A-MHT and MI-GBT include algorithmic extensions to account for (i) 
evasive move-stop-move target motion with motion-sensitive kinematic sensors, and (ii) the redundant-
measurement phenomena observed in real surveillance data.  
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